1. Home
  2. Docs
  3. Advanced Python
  4. Data Visualization
  5. Built-in Data Visualization

Built-in Data Visualization

Both series and DataFrame have a plot() method

Line Plot

X axis is not provided Pandas by default considered index as x axis

import pandas as pd
import matplotlib.pyplot as plt
data= pd.read_csv("F:/Advanced Python/Module - 3/Dataset/iris.csv")
data.plot(kind='line',
         y='Petal Length',
          figsize = (10,5),
          style='b-',
          title = " Petal Length"
         )
plt.show()

Plotting multiple lines

data.plot(kind='line',
         y=['Petal Length','Sepal Length','Sepal Width'],
          style=['b-*','r-.H','c:s'],
          figsize = (10,5),
          title = " Petal Length",
          label = ['Petal Length','Sepal Length','Sepal Width'] # label should be same length as of y
         )
plt.show()
# to visualize all the numerical columns in the dataset
data.plot(kind='line', subplots= True, layout=(2,2),
          figsize=(10,5), title = "Visualization of Iris Data", sharex=False
        )
plt.show()

Scatter plot

data.plot(kind='scatter',x='Sepal Length',y='Petal Length')
plt.show()

Heat Map

  • Lets to visualize the correlation coefficients
  • A heatmap is a matrix kind of 2-dimensional figure which gives a visualisation of numerical data in the form of cells.
  • Each cell of the heatmap is coloured and the shades of colour represent some kind of relationship of the value with the dataframe
# generating pairwise correlation
corr1 = data.corr()
  # Displaying dataframe as an heatmap 
# with diverging colourmap as coolwarm
corr1.style.background_gradient(cmap ='coolwarm')
corr1 = data1.corr()
sns.heatmap(corr1, annot = True)
plt.show()

DataFrame.plt.functions

Area

DataFrame.plot.area(x=None, y=None)

  • X, coordinates for the x axis. By default index
  • Y coordinates for the y axis . (column)

Bar

DataFrame.plot.bar(x=None, y=None

  • X:Allows plotting of one column versus another. If not specified, the index of the DataFrame is used.
  • Y: Allows plotting of one column versus another. If not specified, all numerical columns are used.

Pie plot

  • A pie plot is a proportional representation of the numerical data in a column. 
  • DataFrame.plot.pie(**kwargs)
    • kwargs -> any keyword arguments
plot = df.plot.pie(y='mass', figsize=(5, 5))
plot = df.plot.pie(subplots=True, figsize=(10, 5))

hist()

plt.style.use('ggplot')
data['Sepal Length'].hist()
plt.show()

Views: 0

How can we help?

0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments